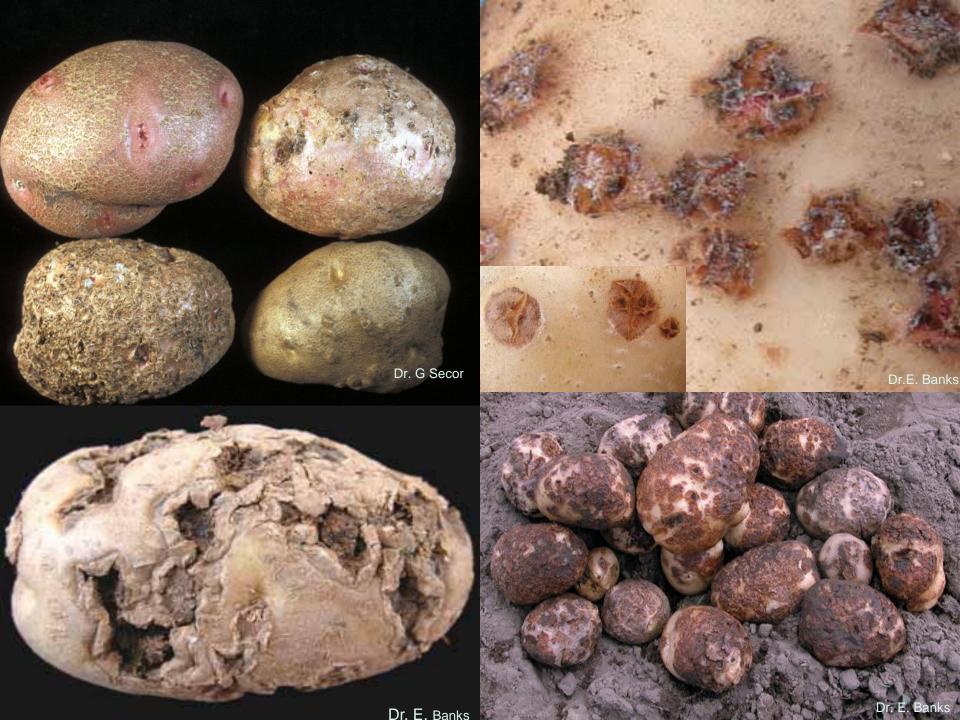
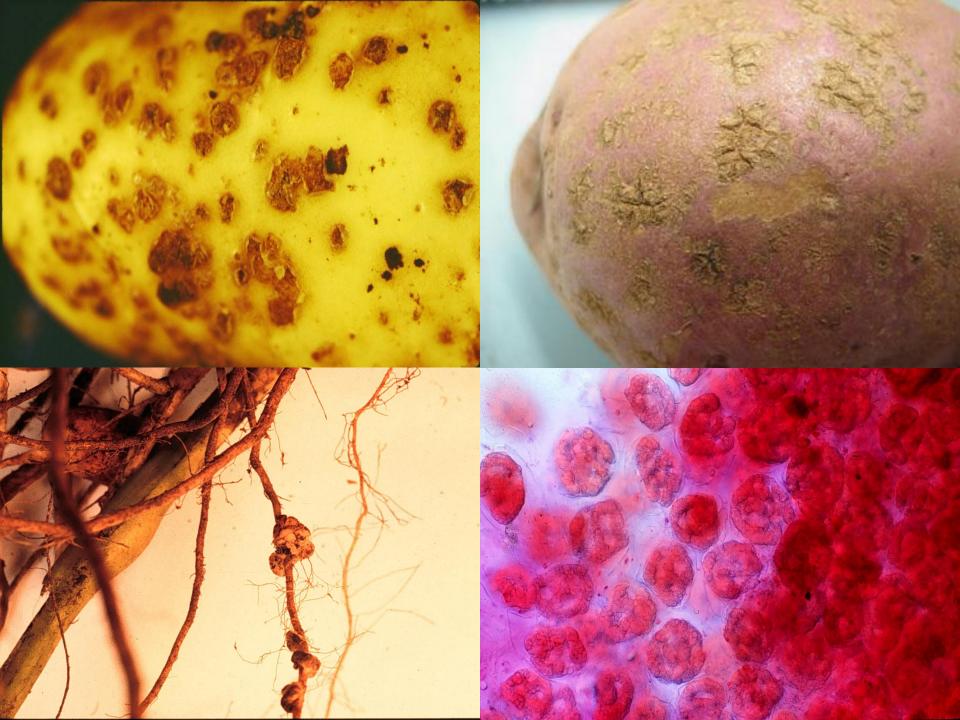
The Common Scab Problem in North America

Gary Secor
North Dakota State University
Fargo ND

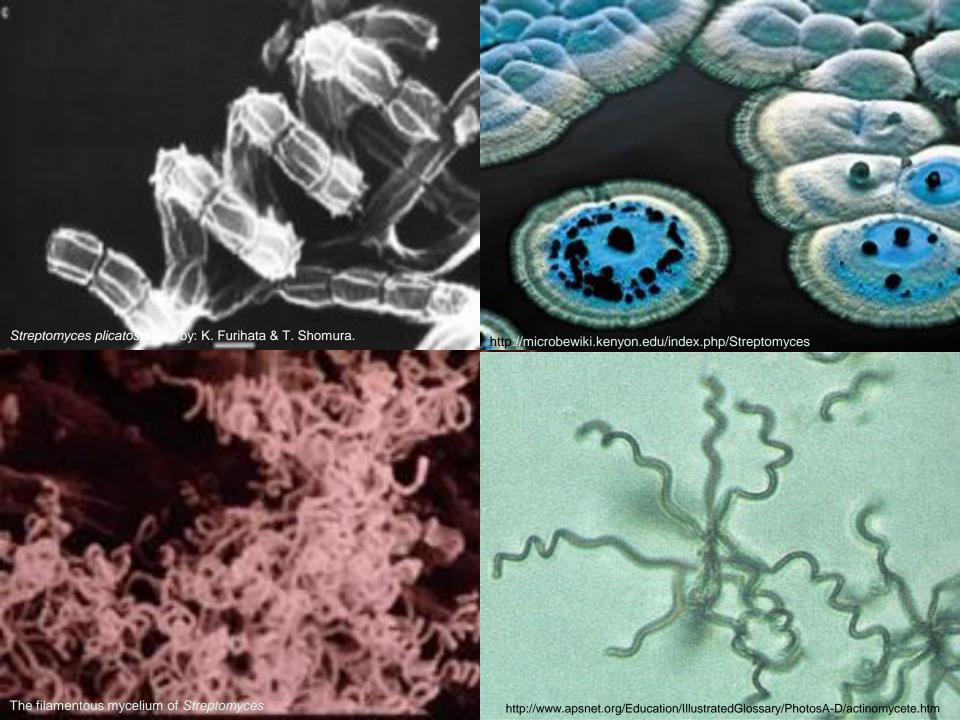

Black Gold Farm Meeting Grand Forks, ND 5 October March 2011

- I have worked on potatoes since 1971 (that's 40 years for those mathematically challenged) and mostly I have tried to avoid scab, because it seemed there were only four things you could do about scab, and none of them worked
 - Avoid high pH soils; you have to farm what your grandparents homesteaded
 - Don't put livestock manure on your soils; what to you do with it?
 - Keep soil moisture high and even; without irrigation, going to church is the only option
 - Use resistant varieties; do you know any?


- During my career, I have been asked more questions about scab control than any other disease, regardless of where I am in the world
- Now I have have to think about scab since John asked me to do this overview
- My job is to provide an overview of common scab that will give you some education about this disease – probably more than you want

The disease

- The disease occurs wherever potatoes are grown; Americas, Europe, Africa, Asia
- First unmistakably identified in US in the early 1890's (Hooker)
- Affects tubers, lower stem, roots, stolons
- Main damage due to the formation of lesions on the surface of tubers that detract from appearance and can lead to market rejection
 - Affects grade and quality, rarely yield
- Huge range of symptoms



 Symptoms may resemble those of powdery scab, and laboratory examination is required to determine the cause; confusing even to experts

 Scab affects other soil crops including beets, carrots, parsnips, radishes, rutabagas, turnips, sugar beets (Hooker) sweet potatoes (Wanner) and peanut pods (Lambert and Loria)

- Common scab is a disease incited by an actinomycete named Streptomyces
 - An unusual group of Gram positive filamentous bacteria
 - Produce branched filamentous mycelia
 - Spiral sporophores
 - At maturity produce spores
 - Produce secondary metabolites
 - Antibiotics (streptomycin), anti-tumor agents, immunosuppressants (Loria et al)
 - Phytotoxins

- The traditional cause of common scab is Streptomyces scabies
- First described in 1891 (Loria et al.)
- Most Streptomyces are saprophytes that do not cause disease; those that cause disease arise periodically
- Within last few years other species of Streptomyces causing potato scab have been described (Wanner)

- S. acidiscabies (Lambert and Loria, 1989); grows in acidic soils in the maritime US and Canada (Manzer et al, 1977)
- S. europascabiei
- S. stellascabiei; Star crack scab
- S. bottropensis;
 Egypt
- S. turgidiscabies Pitted scab
- S. aureofaciens
 Netted scab
- S. reticuloscabiei; Netted scab
- Three species from Korea

- The pathogen is
 - Tuber-borne
 - A soil inhabitant
- Infection occurs through lenticels, stomata, wounds and insect feeding injury
- Over winters in soil and tubers
- Persists many years; indefinitely

Pathogenicity Factors

- Thaxtomin; main toxin responsible for pathogenicity and symptoms
 - Nitrated dipeptides A and B
 - Tyrosine:tryptophan (thaxtomin A)
 - Phenylalanine:tryptophan (thaxtomin B)
- Enzymes
- Virulence factor; nec1 protein

Thaxtomin A

Thaxtomin A

Thaxtomin A

- Inhibits cellulose biosynthesis enzymes;
 - Prevents normal cell wall synthesis; results in cell death;
 - All plant cells have cell walls
- Thaxtomin plus the other virulence factors form "pathogenicity islands"
- These islands can move among Streptomyces species creating new scab pathogens by converting non-pathogenic Streptomyces to pathogens
- May explain variability in symptoms

Control

- Now we understand the pathogen and how it causes disease better, what does this mean for control
- This is the area that needs some creative work

Control Strategies

- Clean Seed
- Chemical Protection
- Resistant cultivars
- Cultural Practices
 - · Maintaining soil moisture
 - Soil pH
 - Crop rotation

Scab free seed

- Prevents introduction into virgin fields
- Scab free seed is preferred
- Difficult to find totally scab free seed
- How much is too much?
 - What is the threshold?
- Certification not based on scab, not a cause for rejection, but type and coverage are noted

Chemical

Fungicides

- Mancozeb, coppers, streptomycin, PCNB seed treatment or in furrow application purported to reduce scab
- Generally not effective; not consistent
- May reduce seed-borne inoculum, but no effect on soil-borne inoculum, which is probably the main source

Insecticides

 Mocap (etheprop) purported to reduce scab by controlling soil insects (springtails, flea beetle larvae) feeding on tubers that make injuries that can act as entry sites; importance not known

Soil amendments

- Many sold to control scab, but most do not work
- Growers beware; example

- A product is recommended at 1 gal in 250 gal of water to cover 10 acres and guarantees "a reduction in the incidence of scab if the above instructions are met"
 - If you do the math, that turns out to be 2 ml/sq ft or 40 drops /sq ft
 - Do you think that will work?

Chemical (Cont.)

- Soil fumigation
 - Vapam (sodium isothiocyanate) may actually make scab worse by killing suppressive soil micro-organisms
 - Continuing work with chloropicrin (tear gas) shows good control of pitted scab (ON, WI, MI, FL)
 - >45°F and 30-day interval post-application planting restrictions would require fall application in most seasons.

Resistance

- Many cultivars with resistance have been released
- Resistance may vary between locations:
 - example: scab resistant in ND, when planted in NE, is susceptible
 - different scab species or biotype?
- Best and most effective control if it can be identified
 - Major effort by most breeding programs
 - Durability of resistance??

Soil moisture

- Best cultural practice to reduce scab
- Known since 1923 (GB Sanford, University of Alberta)
- Even and high soil moisture beginning at tuber initiation and continuing 4-6 weeks
 - Need irrigation

Rotation

May help, but S. scabies is a soil inhabitant and persists in soil basically forever

Soil pH adjustment

Adjusting soil pH with lime or sulfur difficult/expensive; not a good option

Unanswered questions and challenges

- How important is seed-borne inoculum?
 - Is there a threshold of coverage that contributes to disease of progeny tubers?
- The need for a seed treatment that controls seed-borne inoculum.
- An understanding of soil antagonists and suppressive soils. A huge soil microbiology area.
 - Example: Disappearance of scab from scab nurseries in ND
- Development of soil fumigation: biological (glucosinolates) or chemical (chloropicrin).
- Durability of host resistance.
- New control methods that really work consistently.